Hybrid Swarm Optimization for Cash Management Using Evolutionary Computing
نویسندگان
چکیده
Cash forecasting plays a vital role in any financial organization to maintain the optimal cash balance to satisfy the customer needs on a daily basis without any delay. In the traditional approach statistical methods were used for cash forecasting. Banks have great challenges to avoid the surplus cash as well as to keep adequate cash to meet the customer demand. An intelligent model is needed to identify the cash requirement using cognitive approach. Hence, an evolutionary computing using the hybrid swarm system was introduced for the cash management of a bank. In this study, cash prediction models were developed from the historic short term data and long term data. In order to find the daily cash requirement of financial organization an intelligent hybrid model composed of an Artificial Neural Network (ANN) and a Particle Swarm Optimization (PSO) was introduced. The proposed methodology was capable of training and adjusting the ANN parameters through PSO to improve the efficiency of the cash management model. In a PSO-based ANN model, PSO searches for a set of best weights and biases for an ANN to minimize the error were evaluated using Mean Square Error (MSE). The experimental analysis was made for the selected parameters to maintain the optimal cash. The proposed ANNPSO model has proven its accuracy with the best MSE of short term data was 0.0035 and for long term data was found at 0.0029.
منابع مشابه
Soft Computing Methods based on Fuzzy, Evolutionary and Swarm Intelligence for Analysis of Digital Mammography Images for Diagnosis of Breast Tumors
Soft computing models based on intelligent fuzzy systems have the capability of managing uncertainty in the image based practices of disease. Analysis of the breast tumors and their classification is critical for early diagnosis of breast cancer as a common cancer with a high mortality rate between women all around the world. Soft computing models based on fuzzy and evolutionary algorithms play...
متن کاملEstimation of LPC coefficients using Evolutionary Algorithms
The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...
متن کاملPareto-optimal Solutions for Multi-objective Optimal Control Problems using Hybrid IWO/PSO Algorithm
Heuristic optimization provides a robust and efficient approach for extracting approximate solutions of multi-objective problems because of their capability to evolve a set of non-dominated solutions distributed along the Pareto frontier. The convergence rate and suitable diversity of solutions are of great importance for multi-objective evolutionary algorithms. The focu...
متن کاملEfficient Data Mining with Evolutionary Algorithms for Cloud Computing Application
With the rapid development of the internet, the amount of information and data which are produced, are extremely massive. Hence, client will be confused with huge amount of data, and it is difficult to understand which ones are useful. Data mining can overcome this problem. While data mining is using on cloud computing, it is reducing time of processing, energy usage and costs. As the speed of ...
متن کاملCash Management Policies by Evolutionary Models: a Comparison Using the Miller-orr Model
This work aims to apply genetic algorithms (GA) and particle swarm optimization (PSO) to managing cash balance, comparing performance results between computational models and the Miller-Orr model. Thus, the paper proposes the application of computational evolutionary models to minimize the total cost of cash balance maintenance, obtaining the parameters for a cash management policy, using assum...
متن کامل